JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, August/September - 2021

DESIGN AND ANALYSIS OF ALGORITHMS
(Computer Science and Engineering)
Time: 3 Hours
Max. Marks: 75

Answer any five questions
 All questions carry equal marks

1.a) Write and explain randomized quick sort algorithm.
b) Discuss about Big oh O, Omega Ω and Theta θ notations with examples.
2.a) Using Merge sort, sort the following elements:

$$
310,285,179,652,351,423,861,254,450,520
$$

b) Analyze the computing time complexity of binary search algorithm.
3.a) Show that depth first search can be used to find the connected components of an undirected graph.
b) Write an algorithm of n-queen's problem and explain.
4. Suppose we start with n sets, each containing a distinct element.
a) Show that if u unions are performed, then no set contains more than $u+1$ elements.
b) Show that at most $n-1$ unions can be performed before the number of sets becomes 1 .
c) Show that if fewer that (n/2) unions are performed, then at least one set with a single element in it remains
[5+5+5]
5.a) Solve the folloy ing $0 / 1$ Knapsack Problem using dynamic programming $\mathrm{n}=4, \mathrm{~m}=3 \mathrm{c}(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(10,15,6,9)$ and $(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(2,5,8,1)$.
b) Explain the concept of the traveling salesperson problem.
6. Use the function OBST to compute $w(i, j), r(i, j)$, and $c(i, j), 0 \leq i<j \leq 4$, for the identifier set (al, a2, a3, a4) $=($ do, if, int, while $)$ with $p(1: 4)=(3,3,1,1)$ and $q(0: 4)=(2,3,1,1,1)$. Using the $r(i, j)$'s construct the optimal binary search tree.
7.a) Explain the general method of Greedy method.
b) Write and explain the Kruskal's algorithm with an illustrative example.
8.a) Explain with respect to branch and bound $0 / 1$ knapsack problem.
b) Discuss in detail about the classes of NP-hard and NP-complete.

